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We present the results of a combined experimental and theoretical investigation of the
family of free-surface flows generated by obliquely colliding laminar jets. We present
a parameter study of the flow, and describe the rich variety of forms observed. When
the jet Reynolds number is sufficiently high, the jet collision generates a thin fluid
sheet that evolves under the combined influence of surface tension and fluid inertia.
The resulting flow may take the form of a fluid chain: a succession of mutually
orthogonal links, each composed of a thin oval film bound by relatively thick fluid
rims. The dependence of the form of the fluid chains on the governing parameters is
examined experimentally. An accompanying theoretical model describing the form of
a fluid sheet bound by stable rims is found to yield good agreement with the observed
chain shapes. In another parameter regime, the fluid chain structure becomes unstable,
giving rise to a striking new flow structure resembling fluid fishbones. The fishbones
are demonstrated to be the result of a Rayleigh–Plateau instability of the sheet’s
bounding rims being amplified by the centripetal force associated with the flow along
the curved rims.

1. Introduction
The collision of laminar jets is one of the generic source geometries for the

generation of fluid sheets (Dombrowski & Fraser 1954), the dynamics and stability
of which have received a great deal of attention owing to their relevance in spray
atomization (Bayvel & Orzechowski 1993; Lefebvre 1989). We here present the
results of an experimental investigation of the collision of high-Reynolds-number
laminar jets. We explore a broad parameter range and observe a rich variety of flow
structures, from the single oscillating jet that obtains at low flow rates, to the violent
disintegration of flapping sheets at high flow rates. We focus our attention on two
previously unexplored flow structures that arise at intermediate flow rates: chains and
fishbones.

Figure 1 illustrates a fluid chain, a steady flow structure composed of thin fluid
sheets bound by relatively thick cylindrical rims generated by the oblique collision
of equal laminar fluid jets. Individual links in the chain are mutually orthogonal
(figure 2), and decrease successively in size until the chain coalesces into a cylindrical
stream. Fluid chains may be produced in a variety of physical settings; for example,
when wine is poured from a lipped jug, when rivulets of water flow off a leaf or sharp
ledge, and during micturition. Fluid chains have been reported elsewhere (Rayleigh
1879 and references therein; Dombrowski & Fraser 1954; Johnson et al. 1996);
however, a quantitative study of their form has not been undertaken. They were first
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Figure 1. (a) A fluid chain resulting from the collision of a pair of identical laminar
jets of a glycerol–water solution: ν = 20 cS, Ri = 0.08 cm, Q = 9.0 cm3 s−1, σ = 66 dyn cm−1,
ρ = 1.19 g cm−3. (b) A close-up of the collision that produces a thin flat sheet of fluid in the
plane orthogonal to the plane of the two jets. Liquid accumulates at the edges of the sheet
to produce thick circular rims that are drawn inward by surface tension. (c) The juncture
between links of a fluid chain. The thick circular rims collide, producing another thin sheet
in the plane orthogonal to the first link. The process repeats until the oscillations are damped
through viscous dissipation. Scale bars: 1 cm.

observed by the authors in an exploratory experimental study of viscous water bells
(Buckingham & Bush 2001); in certain parameter regimes, fluid chains were found to
emerge from the corners of the polygonal sheet, as is evident in figure 3.

When two identical high-Reynolds-number laminar fluid jets collide at sufficiently
high speed that gravity is negligible, the subsequent dynamics is dominated by
fluid inertia and surface tension. The collision generates a fluid sheet in a plane
perpendicular to the plane of incidence of the jets. Within the sheet, fluid is shot
radially away from the point of impact of the jets at roughly uniform speed. The
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Figure 2. Front and side views of the fluid chain resulting from the collision of a pair of
identical laminar jets. The first link, of length 6.3 cm, is evident in (a), the second in (b). Scale
bar: 1 cm.

sheet thus thins as 1/r , where r is the radial distance from the point of impact, until
reaching the sheet’s edge. The curvature force associated with the surface tension acts
normal to the edges of the fluid sheet and so acts to limit its lateral extent. Moreover,
the curvature force causes the sheet to retract and ultimately close, thus forming the
apex of the first link. Fluid accumulates at the edges of the sheet to form relatively
thick rims that bound the fluid sheet. When these rims collide at the apex of the link,
they give rise to another thin sheet in the plane perpendicular to the first link. The
process repeats, producing mutually orthogonal links that decrease progressively in
size until the chain coalesces into a cylindrical stream through the action of viscosity
(figure 1).
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Figure 3. A polygonal fluid sheet (Buckingham & Bush 2001) generated by extruding a
glycerine–water solution of viscosity 10 cS from a circular annulus of diameter 1 cm. Fluid
chains are seen to emerge from the corners of the polygon. Scale bar: 1 cm.

Fluid chains may alternatively be understood as large-amplitude oscillations of a
fluid jet with a non-circular cross-section. Rayleigh (1879) and Bohr (1909) examined
the small-amplitude vibrations that arise when a laminar fluid jet is extruded from
an elliptical orifice. As the jet leaves the orifice, surface tension causes it to seek
out a circular cross-section; however, if the jet Reynolds number is sufficiently high,
inertia causes an overshoot. Bohr (1909) demonstrated that the form of the resulting
inertial–capillary oscillations may be used as a means to deduce surface tension.
Fluid chains may be thought of as the large-amplitude limit of these inertial–capillary
oscillations, in which the jet is composed of a thin film and relatively thick bounding
rims.

Taylor (1960) considered the shape of sheets generated by the collision of laminar
water jets. In his study, the sheet had unstable rims: once fluid reached the rim, it was
immediately ejected in the form of droplets. Consequently, flow along the rims was
not dynamically important, and Taylor deduced the sheet shape simply by equating
the normal inertial force with the curvature force. In particular, the sheet radius was
found to be well-described by the Taylor radius, rT (θ) = ρu0Q(θ )/(2σ ), where u0 is
the uniform sheet speed, Q(θ ) is the flux distribution within the sheet (see figure 9)
and ρ and σ denote the fluid density and interfacial tension. In our experimental
study of fluid chains, the fluid viscosity is approximately 10–100 times that of water,
and the sheet rims are stable. Consequently, the force balance governing the sheet
shape is altered substantially, and we must consider explicitly the coupling between
the rim and sheet dynamics. Specifically, flow along the rims results in a centripetal
force that must appear in the normal force balance at the rim.

Fluid chains provide a relatively simple test geometry for a theoretical description
of the dynamics of thin sheets bound by stable rims. In this paper, we build upon the
theoretical work of Taylor (1959b) in developing a system of equations governing the
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Figure 4. The fishbone instability (a) An unstable chain link as seen with normal ambient
lighting (b) Strobe illumination reveals the fishbone form: the fluid sheet corresponds to the
fish head, and the tendrils in its wake to the bones. Note the waves on the sheet surface evident
in (b). Scale bar: 1 cm.

shape of such sheets. The viscous parameter regime examined in our experimental
study of colliding fluid jets allows us to test our theory against experiment. Specifically,
we integrate the governing equations numerically and compare the calculated shapes
with those observed in the laboratory.

In a certain parameter regime, the fluid chain is subject to an instability marked
by an apparent blurring of the chain’s rim (figure 4a). When the flow is illuminated
with a strobe lamp, and the frequency of the strobe tuned to that of the flow, one
may plainly resolve the details of the flow, which appears to hang motionless in
the air (figure 4b). Increasing the flow rate broadens the resulting flow structure
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Figure 5. The fully developed fishbone structure: (a) with normal ambient lighting it appears
blurred, but strobe illumination (b) reveals a broad fishbone structure. Scale bar: 1 cm.

(figure 5), which we refer to as fluid ‘fishbones’: the fish head corresponds to the
fluid sheet, and the bones correspond to the underlying fluid tendrils (Hasha &
Bush 2002). A consistent physical picture for the fluid fishbones is developed, and
a discussion of their stability characteristics presented. The stability is compared to
more generic flapping sheet instabilities observed in water (e.g. Dombrowski & Fraser
1954; Ramos 2000; Villermaux & Clanet 2002). We demonstrate that the mechanism
for the fishbone instability is quite distinct, with the wavelength being prescribed by
the capillary pinch-off of the fluid rims.

In § 2, we describe our experimental technique, and in § 3 present the results of our
experimental study of colliding laminar fluid jets. In § 4, we develop the equations
governing the shape of a fluid sheet bound by stable rims. In § 5, we apply our
theory in describing the shape of the first link in the fluid chain, and compare our
theoretically predicted shapes with our experiments. The instability of the fluid chain
responsible for the fluid fishbones is detailed in § 6.

2. Experiments
Our experimental study consists of three components. The first is an exploratory

investigation of the flow structures generated from the collision of laminar jets. The
second is a careful quantitative study of the form of stable fluid chains, specifically
measurements of the form of, and flow within, the first fluid sheet formed by the
collision of laminar jets. These measurements are used to test the validity of the
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Figure 6. A schematic illustration of the experimental apparatus. Glycerol–water solutions
were pumped through a pair of identical nozzles with inner radii 0.08 cm, and the flux rates
measured with a flowmeter.

theoretical developments for the shapes of fluid sheets bound by stable rims presented
in § 4. The third component of our experimental study is an exploration of the fishbone
instability.

A schematic illustration of the apparatus used in our experimental study is presented
in figure 6. A glycerine–water solution was housed in a square Plexiglas tank with
width 50 cm and depth 40 cm. The fluid was pumped from the reservoir through
polystyrene tubing into a glass splitter, then through two identical nozzles with inner
radius of 0.8 mm to produce a pair of identical fluid jets. Care was taken to ensure
that conditions in the tubes after the splitter were symmetric, so that the fluxes in the
two jets were identical to an accuracy of 0.5%. The flux in each jet was calculated
from the fluid volume expelled into a graduated cylinder over a prescribed time
interval. Total flow rates from the variable-flow pump (Cole Parmer, Model 75225-00)
were measured with a digital flowmeter (AW Company Model JFC-01) that gave an
accuracy of 0.1% over the range considered. Characteristic flow rates are listed in
table 1.

The exit nozzles were mounted on adjustable clamps that allowed easy manipulation
of the incoming jets. Symmetry in the fluid chains required that the jet centrelines
intersect, and was achieved by manipulating the nozzles until the first link lay in the
plane perpendicular to the incoming jets, and the second link in the plane of the
incoming jets. If the jets were not perfectly aligned, twisting gave the fluid chain a
helical form.

Viscosity measurements were made using Cannon-Fenske Routine tube viscometers,
that are accurate to 0.14%. Density measurements were made with an Anton-
Parr 35N densitometer, that is accurate to 0.01%. Surface tension measurements
were made with a Kruss K10 surface tensiometer, that is accurate to 0.1 dyn cm−1.
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Parameter Symbol Range

Viscosity ν 0.01–1.0 cm2 s−1

Density ρ 1.0–1.2 g cm−3

Surface tension σ 56–70 dyn cm−1

Flux rate Q 4–18 cm3 s−1

Incoming jet radii Ri 0.08 cm
Sheet speed u0 100–300 cm s−1

Jet impact angle β 30◦–180◦

Dimensionless group Definition Range

We ρu2
0Ri/σ 20–300

Re u0Ri/ν 1–2000
Fr u2

0/(gRi) 102–103

S Q/(u0πR2
i ) 2.0–3.0

Oh σRi/(µν) 50–200

Table 1. The parameter regime explored in our experimental study of colliding fluid jets.

Figure 7. A sequence of superimposed frames taken at 500 frames per second with an
exposure time of 0.001 s shows the tracks of three bubbles passing through the chain’s sheet.
Fluid properties: ν = 37.6 cS, ρ =1.206 g cm−3, and σ = 61.3 dyn cm−1. The link length is
5.5 cm. The fluid evidently travels in a straight line from the impact point to the rim. The
approximately even spacing of the bubbles between frames indicates the relative constancy of
the fluid speed within the sheet. Flow is from left to right.

The frequency of the fishbone instability was measured by synchronizing the flow
structure with a digital strobe lamp (Monarch Phaser Strobe) that has a precision
of 0.1 Hz. The flow speed and direction within the sheet were measured by particle
tracking with a Redlake Motionscope Model PCI 8000S high-speed video camera.
Two distinct particle tracking techniques were employed. In the first, plyolite particles
with characteristic diameter 50–200 µm were introduced into the source line, and were
visible as they swept through the fluid sheet. In the second, we tracked microbubbles of
comparable size that were similarly introduced. As in the experiments of Dombrowski
& Fraser (1954), suspended particles with diameters less than the sheet thickness were
found to have a negligible influence on the sheet dynamics. In order to ensure that
the particle tracks were adequately resolved, we recorded at 500 frames per second
with 0.001 second exposure times. These video data were then analysed using Midas
Version 2.08 particle tracking software to obtain the sheet velocity field.

Figure 7 illustrates three distinct bubble tracks on a fluid sheet corresponding to
a single chain link. The bubble positions are marked every 0.002 s, and indicate that
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the sheet velocity is purely radial from the point of impact of the jets. The particle
and bubble tracking indicate that the sheet speed is constant to within approximately
10%. We note that this constancy of the sheet speed was assumed but not verified
by Taylor (1959a), and will be exploited in our theoretical description of the fluid
chains presented in § 4. The constancy of the speed within a circular sheet was similarly
verified by Clanet & Villermaux (2002) using particle tracking. A careful experimental
study of the velocity distribution within a fluid sheet formed by the collision of a
pair of jets has recently been presented by Choo & Kang (2002), who demonstrated
that the sheet speed may decrease with angular distance from its centreline owing to
initially non-uniform velocity distributions within the jet that may arise through the
influence of the nozzle walls.

The shape of the chain links is expected to depend strongly on the distribution of the
flux Q(θ ) within the sheet; however, the theoretical dependence of Q(θ ) on the impact
angle of the jets, β , is not simply characterized. Hureau & Weber (1998) develop a
theoretical description for the flow generated by the collision of two-dimensional jets;
however, the analogous three-dimensional problem has not been solved exactly.

The mirror symmetry of the colliding jets requires that the flux profile be even, and
so expressible as a cosine series of the form

Q(θ ) = a0 + a1 cos θ + a2 cos 2θ + · · · .

Conservation of mass and momentum determine a0 and a1, but the higher-order

coefficients are not deduced simply. Conservation of mass, Q =
∫ 2π

0
Q(θ ), requires

that a0 = Q. Conservation of vertical momentum,

2πR2
i u

2
i cosβ =

∫ 2π

0

u2
0hr cos θ dθ =

∫ 2π

0

u0Q(θ ) cos θ dθ, (2.1)

requires that

a1 = SR2
i ui cos β. (2.2)

There are an infinite number of possible functional forms Q(θ ) that satisfy these two
constraints. The simplest such solution,

Q(θ ) = Q + SR2
i ui cos β cos θ, (2.3)

has been tested experimentally (Miller 1960), but was not found to adequately describe
the observed flux profiles. Another solution suggested by Miller (1960) is

Q(θ ) =
Q

2π

(
1 − cos2

(
1
2
β
)

1 + cos2
(

1
2
β
)
)

 1

1 − 2 cos
(

1
2
β
)

1 + cos2
(

1
2
β
) cos θ


 . (2.4)

This flux profile exhibits more realistic features, such as a small but finite backwards
flow for all values of β . It enjoyed a limited success in Miller’s experimental study, in
which the profile matched experimental observations of a single fluid sheet. However,
Miller’s profile did not match the profiles observed in our experiments sufficiently
well to justify its use in initializing our numerical integrations.

To surmount similar theoretical difficulties, Taylor (1960) was obliged to measure
the flux distribution within the sheet by scanning across it with a collection box with
a sub-millimetre opening. A similar approach was taken in our experiments: flux
profiles were measured by splitting the fluid chains with a razor blade as illustrated in
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Figure 8. The apparatus used to measure flux profiles in the fluid sheets. A razor blade
mounted on a vertical and horizontal traverse splits the fluid chain into two streams. Measuring
the partition of fluxes in a series of horizontal traverses allows the reconstruction of a flux
profile Q(θ ).

figure 8. A razor blade was mounted on a horizontally and vertically adjustable arm.
When brought into contact with the thin sheet of the fluid chain and tilted slightly,
the razor blade split the chain into two streams. The volume flux was measured
by collecting the fluid in each stream with a graduated cylinder and timing with a
stop watch. The flux profile within the sheet Q(θ ) was thus reconstructed. We note
that the sheet speeds were supercritical (greatly in excess of the capillary wave speed
23 cm s−1); consequently, the measurements did not alter the form of the upstream
flux distribution.

The angle between the line joining the tip of the razor blade to the origin and the
sheet centreline is defined to be θ (see figure 9). The cumulative volume flux split into
the right-hand stream is

QR(θ) =

∫ θ

−π

Q(φ) dφ, (2.5)

while that split into the left-hand stream is

QL(θ) =

∫ π

θ

Q(φ) dφ = Q − QR(θ). (2.6)

Measurements of QL and QR were made at various θ values by making horizontal
passes across the vertical fluid chain at three different heights. For each pass, horizontal
increments of 1 mm were used. For each measurement, the angle θ was computed by
recording the razor tip’s location (x, y) relative to the origin (see figure 8). The flux
distribution Q(θ ) is simply equal to dQR/dθ . As the purpose of this study was to test
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Figure 9. A schematic illustration defining the physical variables used in our theoretical
description of the fluid chain. (a) A plan view of the first link of the fluid chain. (b) A
cross-section of the rim and sheet.

the governing equations of a fluid sheet, and not to solve the problem of colliding
jets per se, we chose to fit Miller’s flux profile to the experimental data by treating β

as a free variable. Integrating equation (2.4) leads to the cumulative flux profile

QR(θ) =
Q

π
tan−1

[(
1 + cos

(
1
2
β
)

1 − cos
(

1
2
β
)
)

tan
(

1
2
θ
)]

+
1

2
. (2.7)

Matlab was used to extract a value of β from the observed data points, and then
Q(θ ) as defined in (2.4) was used in the numerical procedures to be detailed in § 4.
An example of the measured values of QR(θ) for one link is shown in figure 10(a),
along with the best-fit curve. The function Q(θ ) computed from these data is shown
in figure 10(b). Figure 10(c) illustrates the corresponding sheet thickness profile, as
computed a distance 2.76 cm from the point of jet collision.
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Figure 10. (a) The cumulative flux distribution, QR(θ ), measured for a sheet generated by
two jets with Q = 10.6 cm3 s−1 colliding at an angle β = 92◦. The resulting sheet is shown
in figure 16(b). The error bars are smaller than the extent of the symbols. The solid line
indicates the best-fit curve of the form (2.7). (b) The corresponding flux distribution, Q(θ ), of
the form (2.4), as calculated from the fitted curve in (a). (c) The corresponding sheet thickness
profile, h(r, θ )/2 (cm), a distance 2.76 cm downstream of the origin. Stretching of the vertical
coordinate is responsible for the apparent distortion of the circular rims.

3. Observations
Consider two identical jets of radius Ri transporting a total flux Q of fluid of

density ρ, kinematic viscosity ν and surface tension σ colliding at an angle β so that
the resulting sheet lies in a vertical plane aligned with the gravitational acceleration
g. The system is governed by seven physical parameters defined in terms of length,
mass, and time. Dimensional analysis thus requires that the system be governed by
four dimensionless parameters. The jet Reynolds number Rej = Q/(νRi) indicates
the relative importance of inertia and viscosity in the jet, the jet Weber number
Wej = ρQ2/(σR3

i ) prescribes the relative importance of inertia and curvature forces,
the jet Froude number Frj = Q2/(gR5

i ) indicates the relative importance of inertia
and gravity, and β is the impact angle of the colliding jets. Table 1 describes the
parameter regime explored in our experimental study. Over the range of viscosities
and flow rates examined, the jet Reynolds numbers ranged from 1 to 2000.

The apparatus was oriented so that the fluid chains were vertical. If L is the
length of a chain link, and u0 the mean sheet speed, then gL/u2

0 indicates the
percentage increase in the fluid speed due to gravity as it traverses the chain. For
the chains observed, the Froude number was between 0.1 and 0.2, and a maximum
acceleration of about 10% could be discerned in the particle tracking measurements.
The negligible influence of gravity on the observed flow structures was underscored
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Figure 11. Regime diagram illustrating the observed dependence of flow structures emerging
from the collision of laminar viscous jets on the governing dimensionless groups. Seven
distinct regimes are delineated: �, oscillating streams; ∗, sheets with disintegrating rims; �,
fluid chains; +, fishbones; �, spluttering chains; �, disintegrating sheets; ×, violent flapping.
Glycerine–water solutions with viscosities in the range of 1 to 94 cS were examined.

by our experiments, where it was found that the orientation of the impacting jets
(vertical or horizontal) had negligible influence on the initial structure of the resulting
flows. In all experiments described henceforth, the fluid sheet resulting from the jet
collision was oriented vertically.

Figure 11 is a regime diagram indicating the dependence of the flow structure on
the governing parameters Rej and Wej . For this series of experiments, we fixed the
collision angle to be β = π/2, and traced the progression of the flow as the flux was
increased for a variety of fluids with viscosities ranging from 1 to 94 cS. Each roughly
diagonal trace in figure 11 corresponds to a glycerine–water solution with a different
viscosity. The lowermost trace corresponds to the fluid with highest viscosity. The
progression of the flow structure for each of the fluids was similar. At the lowest
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(a) (b)

Figure 12. The form of the flow taken in the ‘disintegrating sheet’ regime delineated in
figure 11. The sheet breaks before the first chain link can close, and is marked by the
appearance of expanding holes. (a) A disintegrating sheet under normal ambient lighting.
(b) A snapshot of the flow structure. We note that the appearance of the holes may result
from the working fluid being a mixture (C. Clanet, personal communication). Scale bar: 1 cm.

flow rates, clear fluid chains do not form: the colliding jets merely coalesce into a
single jet marked by inertial–capillary oscillations of the form examined by Rayleigh
(1879) and Bohr (1909). The distinction between such oscillations and fluid chains is
arbitrary to some degree, but made here on the grounds of the ratio of sheet to rim
thickness, which is large for fluid chains. As the flow rate is increased, fully developed
chain structures emerge, and the stable chain links increase in length.

When the flow rate exceeds a critical value the fluid chain may be marked
by the substantial shortening of the first link and apparent blurring of the rim
that accompanies the onset of the fishbone instability. Strobe illumination at the
appropriate frequency reveals the perfectly regular and temporally periodic fishbone
structure (figures 4 and 5). As the flow rate is increased, the breadth of the fishbone
structure increases progressively. The fishbone form persists through a finite range
of flux rates, beyond which the sheet reverts to a chain. The resulting chain is
considerably longer than that arising prior to the fishbone instability, and is either
stable or marked by a weak spluttering of its lower extremities.

As the flux is further increased, the chain becomes unstable, resulting in the
irregular disintegration of the sheet into a series of droplets. First, small holes form
in the interior of the sheet and spread until they reach the rim, producing fluid
ligaments that lead ultimately to a fine spray of droplets (figure 12). At the highest
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Figure 13. A typical snapshot of the flow taken in the ‘violent flapping’ regime delineated in
figure 11. The sheet disintegrates into a series of droplets due to the large-amplitude flapping
instability of the sheet. Scale bar: 1 cm.

fluxes considered, the fluid sheet is characterized by a violent flapping instability
(figure 13; Dombrowski & Fraser 1954) reminiscent of that on circular water sheets
(Clanet & Villermaux 2002), that eventually leads to the break-up of the fluid sheet
into a series of microdroplets (Villermaux & Clanet 2002). The parameter regime
(figure 11) indicates that the violent flapping instabilities leading to the catastrophic
sheet break-up are suppressed by the influence of fluid viscosity.

The leftmost traverse in figure 11 corresponds to water, for which neither chains
nor fishbones were observed. The collision of the water jets gave rise to a weakly
oscillating stream until a critical flux, beyond which the flow assumed the form of a
thin lenticular sheet with unstable rims. This regime corresponds to that examined by
Taylor (1960), and is marked by water drops being ejected radially from the sheet’s
unstable rims.

We next detail our observations of the fluid fishbones, which yield valuable insight
into their origins. The onset of the fishbone structure takes the form of a varicose
deformation of the rim at the top of the first link. As the flow rate increases, the sheet
length increases and the varicose deformation extends over a greater length of rim
and increases in amplitude. Slightly detuning the strobe lamp allows one to observe
clearly the evolution of the instability, and reveals that the fishbone instability is
accompanied by a flapping of the sheet that grows in amplitude along its length, with
a wavelength corresponding to the distance between fishbones. Curvature forces are
insufficient to contain the bulbous regions that form along the rim against centripetal
forces associated with their curved trajectory along the rim. These bulbous regions
are thus flung outwards, drawing out tendrils that are eventually subject to a pinch-
off instability that results in a regular array of droplets in the wake of the sheet
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Figure 14. Broad fishbone structures resulting from the asymmetric collision of fluid jets.
Scale bars: 1 cm.

(figures 5, 14, 15). The flux of mass and momentum out of the rim has a significant
influence on the sheet shape: the first link becomes shorter than its stable counterpart
by as much as 50%. This underscores the importance of the flow along the rims to the
shape of the sheet, a physical effect treated explicitly in our theoretical developments
of § 4.

The frequency of the fishbone structure varied from 150 to 250 Hz and, for a partic-
ular fluid, was found to increase with increasing flux. The wavelengths were relatively
constant over the range considered, varying from 0.7 to 1.0 cm. It is noteworthy that
there is hysteresis at the upper limit of the fishbone regime, specifically in approxim-
ately the rightmost quarter of the fishbone regime delineated in figure 11: the critical
flux at which the fishbones revert to a stable chain is larger when approached from
below. In the parameter regime influenced by this hysteresis, the flows are bistable:
perturbing the flow by a slight impact with the source jets may cause the structure to
change from chains to fishbones, or vice versa. At lower flow rates, the fishbone struc-
ture is the only flow observed; no hysteresis was observed at the lower bound of the
fluid fishbone regime. The borders marked in figure 11 correspond to those deduced
by progressively increasing the flux. Finally, we note that the fluid fishbones were not
observed for all fluids, but arose exclusively for fluids with viscosities 5 <ν < 39.5 cS.
The limited parameter regime (280 < Rej < 1200, 800 <Wej < 4000) in which the
fishbones exist is presumably responsible for their not yet having been reported.

If the jets collide asymmetrically (so that their centrelines do not precisely intersect),
a fishbone structure is again observed. In an asymmetric collision, a larger fraction of
the horizontal momentum of the jets is transferred directly to the sheet; consequently,
the resulting structures are broader than those created by a symmetric collision,
and characterized by a more elaborate array of drops downstream, as is evident in
figures 14 and 15. The regularity of the fishbone instability is underscored by the
fact that the photographs are double exposed, as is evident upon close inspection of
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(a) (b)

Figure 15. Close-ups of the long tendrils of fluid produced by the fishbone instability. As
the tendrils pinch-off through the Rayleigh–Plateau mechanism, a regular array of drops is
produced in the wake of the fishbones. Scale bars: 1 cm.

the central stream of fluid emerging from the bottom centre of the link in figure 15.
The photograph is a superposition of the state of the link at two or more strobe
flashes; nevertheless, the delicate flow structure, including that associated with the
micropinch-off of the fluid fishbones, is nearly perfectly resolved. Close-ups of the
microstructure in the wake of the fluid fishbones are provided in figure 15.

4. Theoretical model of the fluid chain
The centrelines of two identical cylindrical jets of radius Ri with combined volume

flux Q collide at the origin. Fluid is ejected radially from the origin into a sheet with
flux distribution Q(θ ), so that the volume flux flowing into the sector between θ and
θ + dθ is Q(θ ) dθ . Guided by the results of our particle tracking experiments, we
assume that flow in the sheet has a constant speed u0, and is directed purely radially
until it reaches the rim of the sheet. Continuity thus requires that the thickness of the
fluid sheet, h(r, θ), decrease like r−1 along any ray from the origin.

The relevant geometry is presented in figure 9: r(θ) is defined to be the distance
from the origin to the rim centreline, and un(θ) and ut (θ) the normal and tangential
components of the fluid velocity in the sheet where it contacts the rim; v(θ) is defined
to be the speed of flow along the rim, R(θ) the rim radius, and ψ(θ) the angle
between the position vector r and the local tangent to the rim centreline. Finally,
rc(θ) is defined to be the radius of curvature of the rim centreline, and s the arc
length along the rim centreline. The differential equations governing the shape of a
steady stable fluid rim bounding a fluid sheet may be deduced by consideration of



302 J. W. M. Bush and A. E. Hasha

conservation of mass in the rim and the local normal and tangential force balances
at the rim (Taylor 1959a).

Continuity requires that the tangential gradient in volume flux along the rim be
balanced by the flux entering the rim from the sheet:

∂

∂s
(vπR2) = unh. (4.1)

In the case of unstable rims, such as those arising in the fishbone instability, an
additional sink term would be required to account for the mass ejected by instability
(e.g. Clanet & Villermaux 2002); however, we here restrict our attention to the case
of steady stable fluid rims as arise in the fluid chains.

The normal force balance requires that the curvature force associated with the rim’s
surface tension balance the force resulting from the normal flow into the rim from
the sheet and the centripetal force resulting from the flow along the curved rim. By
assuming that the rims are circular in cross-section, that R/rc � 1, and that the rim
radius is large relative to the sheet thickness, we deduce in the Appendix an explicit
expression for the curvature force (A 6). The normal force balance thus assumes the
form

ρu2
nh +

ρπR2v2

rc

= 2σ +
2σ (π − 1)R

rc

. (4.2)

Note that the curvature force has two components. The first, 2σ , is that associated
with the curvature in a plane perpendicular to the fluid sheet and normal to the rim.
The second, 2σ (π − 1)R/rc, is that associated with the curvature of the rim centreline.

The tangential force balance at the rim requires that tangential gradients in
tangential momentum flux be balanced by tangential gradients in curvature pressure,
viscous resistance Fv , and the tangential momentum flux arriving from the sheet:

ρ
∂

∂s
(πR2v2) = −πR2σ

∂

∂s
∇ · n̂ + Fv + ρhutun. (4.3)

The relative magnitudes of the inertial and viscous terms is prescribed by the rim
Reynolds number u0R/ν, which assumes a minimum of O(102): in our system, the
influence of viscosity may be safely neglected. Accurate to O(R/rc), we express the
mean curvature as ∇ · n̂ = 1/R. The steady tangential force balance may thus be
expressed

∂

∂s
(πR2v2) = hutun − πR2σ

ρ

∂

∂s

(
1

R

)
. (4.4)

It is valuable to compare our governing equations with those deduced by Taylor
(1959b). Our analysis differs from that of Taylor only through inclusion of terms
associated with a finite rim radius. In the normal stress balance, Taylor neglected
the term resulting from the curvature of the rim centreline. In the tangential force
balance, he neglected the pressure term resulting from tangential gradients in rim
curvature. While these terms are small (of order R/rc and We−1, respectively) in our
application, physical settings may arise where they are non-negligible; consequently,
we retain them for the sake of generality.

We proceed by reducing (4.1), (4.2), and (4.4) to a system of partial differential
equations in terms of r(θ), v(θ), R(θ), and ψ(θ), as well as the empirically deduced
flux function Q(θ ). Conservation of mass in the sheet requires

h =
Q(θ )

u0r
. (4.5)
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Geometry indicates that

ds2 = dr2 + (r dθ )2 (4.6)

and

dr

dθ
= r cotψ. (4.7)

Thus,

ds =
r dθ

sin ψ
and

d

ds
=

sin ψ

r

d

dθ
. (4.8)

We also employ the geometric relations:

un = u0 sin ψ, ut = u0 cos ψ, (4.9)

1

rc

=
d

ds
(ψ + θ) =

sin ψ

r

(
dψ

dθ
+ 1

)
. (4.10)

Substituting into equations (4.1), (4.2) and (4.4) yields

Q(θ ) =
d

dθ
(vπR2), (4.11)

ρu0Q(θ ) sin2 ψ + ρπR2v2 sin ψ

(
dψ

dθ
+ 1

)
= 2σ

(
r + (π − 1)R sin ψ

(
dψ

dθ
+ 1

))
,

(4.12)

d

dθ
(πR2v2) = Q(θ )u0 cos ψ +

πσ

ρ

dr

dθ
. (4.13)

These equations, together with (4.7), completely characterize the dynamics of the
stable rims.

We introduce dimensionless variables, designated by stars, as follows:

(ut , v) = u0(u
∗
t , v

∗), R =RiR
∗, r = (ρu0Q/2σ ) r∗, Q(θ) = Qq(θ), (4.14)

where Ri is the radius of the impacting jets, Q the total jet flux, u0 the sheet speed and
ρu0Q/(2σ ) the Taylor radius. Substituting into equations (4.11)–(4.13) and dropping
stars yields the dimensionless rim equations:

d

dθ
(vR2) = Sq(θ), (4.15)

q(θ) sin2 ψ +
1

S
R2v2 sin ψ

(
dψ

dθ
+ 1

)
= r +

1

WeS

2 (π − 1)

π
R sin ψ

(
dψ

dθ
+ 1

)
, (4.16)

d

dθ
(R2v2) = Sq (θ) cos ψ + We−1 dr

dθ
. (4.17)

The system is uniquely prescribed by the three dimensionless groups

S =
Q

u0πR2
i

, We =
ρu2

0Ri

σ
. (4.18)

The range of these parameters in our experimental study is detailed in table 1.
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Rearranging the equations yields the following system of differential equations:

dr

dθ
= r cotψ, (4.19)

dψ

dθ
=

S(r − q(θ) sin2 ψ)

R2v2 sin ψ − We−1[2(π − 1)/π]R sin ψ
− 1, (4.20)

dr

dθ
= Sq(θ)

2v − cos ψ(
2Rv2 + We−1

) , (4.21)

dv

dθ
= Sq(θ)

We−1 − 2Rv2 + 2Rv cos ψ

2R3v2 + R2/We
. (4.22)

When appropriately initialized (in a manner to be detailed in § 5), this system may
be integrated to yield the shape of a fluid sheet bound by stable rims, specifically the
first link in the fluid chain.

5. Comparison of experiments and theory
To calculate the sheet shapes corresponding to the first link in the stable fluid chains,

the flux profile Q(θ ) and constant sheet speed u0 were measured using the techniques
detailed in § 2, and used as input to the theory detailed in § 4. The numerical integration
of equations (4.19)–(4.22) was initialized at a point on the rim corresponding to the
largest angle θ0 for which a point on the cumulative flux profile was measured. At this
point, the initial conditions, specifically the variables r(θ0), ψ(θ0), R(θ0) and Ri , were
measured from a chain image in Matlab’s Image Processing Toolbox. The appropriate
lengthscale was deduced from a reference length, a millimetre grid, included in the
image. The initial rim speed v(θ0) was calculated from the measured rim radius and
flux profile: as the flux in the rim at θ0 is QR(θ0), the rim speed is given by

v(θ0) = QR(θ0)/(πR(θ0)
2). (5.1)

Figure 16 shows overlays of three observed and theoretically predicted chain link
shapes. The grid lines in the numerical curves are separated by 2 cm. The output of
the numerics was fit to the photographs by matching these grid lines to the reference
lengthscale, then positioning the origin of the model at the centre of the jet impact
region. The theoretical curves produce a satisfactory prediction of the observed chain
link shape for each trial.

The primary source of error arises from inaccuracy in the flux profile measurements.
In calculating these profiles, the vertical and horizontal distances from the tip of the
razor to the point of collision of the jets were measured at increments of 1 mm, with
an accuracy of 0.2 mm. The error in the inferred flux introduced by this inaccuracy
could be as large as 20%, but was typically on the order of 5–10%. Moreover, these
errors were minimized through correlating the flux profiles inferred along each of the
three horizontal passes. Systematic error in the angle measurements could also be
introduced through misalignment, specifically if the chain was not perfectly vertical or
if the traverse arm holding the razor was not parallel to the fluid sheet. The resulting
misalignment error was most pronounced when the vertical distance from the razor
tip to collision point was small. However, the systematic error so produced was easily
identified, and the data from such flawed trials were discarded. In practice, the spread
in the flux profile data was within 10%, and the measured flux profiles were adequate
to produce a satisfactory agreement between theory and experiment.
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(a) (b) (c)

Figure 16. Comparisons of observed and theoretically predicted (white lines) shapes of the
sheets comprising the first chain link. (a) We= 58.6, Re= 38.56, Q = 10.1 cm3 s−1, β = 44◦.
(b) We= 58.8, Re= 40.4, Q = 10.6 cm3 s−1, β = 92◦. (c) We= 40.0, Re= 33.0, Q = 9.21 cm3 s−1,
β = 135◦. The grid arcs are 2 cm apart.

In the parameter space examined experimentally, a maximum acceleration of about
10% could be discerned in the particle tracking measurements. For the numerics, the
sheet speed was taken as the average value measured experimentally. The influence
of aerodynamic drag on fluid sheets was examined by Taylor (1959a), whose analysis
may be directly applied to our model. The estimated percentage loss of sheet speed
due to air drag was calculated; in all cases, the correction to the sheet speeds was of
order 10−3, and so safely neglected.

Finally, we note that care had to be taken in measuring surface tension, to which
the predicted sheet shapes were extremely sensitive. It was necessary to make surface
tension measurements directly following an experiment, as the surface tension of the
glycerine–water solutions was found to be weakly time-dependent (varying by up to
5% over the course of a week). Presumably this weak time-dependence was the result
of some combination of evaporation, uptake of water vapour from the atmosphere,
and diffusion of soluble surfactant to the surface.

6. Fishbones
Fluid fishbones are characterized by two coupled physical effects: the varicose

instability on the rim, and the flapping of the fluid sheet. Both sheet- and rim-driven
instabilities were thus considered as instigators of the fishbones. The fishbones may
be the result of a shear-induced flapping wave mode excited on the fluid sheet (Squire
1953; Hagerty & Shea 1955): the flapping mode disrupts the flow in the rim, leading to
the formation of the bulbous regions that are flung outwards by the centripetal force,
and drawn into the tendrils that comprise the fishbones. The linear stability theory
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for a flapping fluid sheet predicts a most unstable wavelength that is larger than that
observed by an order of magnitude (Squire 1953). Moreover, figure 11 clearly indicates
that fishbones exist only in a finite range: for a particular fluid, they vanish at both
higher and lower flux rates. This is inconsistent with the view that the fishbones are
initiated by a shear-induced flapping instability: such flapping sheets are not expected
to revert to a stable form as flow rates are increased (Clark & Dombrowski 1972;
Crapper, Dombrowski & Pyott 1975). It is noteworthy that the classical flapping sheet
regime was observed in our experiments (at the right in figure 11), but at considerably
higher flow rates. We thus conclude that the fishbone instability is rim- rather than
sheet-driven.

Two possibilities exist for rim-driven instabilities on the fluid sheet. First, the
fishbones may be prompted by a Rayleigh–Taylor instability induced by the
centripetal accelerations associated with flow along the curved rim. Second, the driving
mechanism may be the capillary instability of the rim: the Rayleigh–Plateau instability
(Rayleigh 1879) prompts rim pinch-off; the subsequent distortion is amplified by the
centripetal forcing associated with flow along the curved rim. According to either
of these physical pictures, the waves evident on the fluid sheet are generated by
the disruption of the sheet forced by the rim break-up, and so are not instrumental
in setting the wavelength of instability. We proceed by investigating the relative
importance of the Rayleigh–Taylor and Rayleigh–Plateau mechanisms.

Consider an interface, across which there is a density difference ρ, accelerating
at a rate ac normal to the interface. The Rayleigh–Taylor instability will induce
instability of all modes with wavelength λ> 2π(σ/(ρac))

1/2. The most unstable mode
has a wavelength 2

√
3π(σ/(ρac))

1/2 and timescale of instability ( 2
3
/
√

3)(σ/(ρa3
c ))

1/4

(Chandrasekar 1961). In our study, a Rayleigh–Taylor-type instability may be induced
on the sheet’s rim by the centripetal acceleration, ac = v2/rc associated with flow
along the curved rim. The Rayleigh–Taylor mechanism thus predicts wavelengths of
instability and growth rates that depend explicitly on the magnitude of the centripetal
acceleration and so the rim speed; specifically, the wavelength of the most unstable
mode is proportional to 1/v. The magnitude of the centripetal acceleration in our
sheets was computed in § 4, and found to vary substantially, both between experiments
and along the length of a single rim, between a minimum of 0 at the stagnation point
at the top of the chain and a maximum of approximately 3000 cm s−2. One thus expects
that the Rayleigh–Taylor mechanism for rim instability would generate a wide range
of wavelengths with a minimum of 1.2 cm. In our experimental study, the wavelength
of instability was found to vary over an extremely limited range, 0.7–1.0 cm.

The form of Rayleigh–Plateau pinch-off of a fluid thread of radius R is prescribed
by the Ohnesorge number, Oh = σR/(µν), a Reynolds number based on the capillary
wave speed σ/µ (Weber 1931; Chandrasekhar 1961; Eggers 1997). At high Oh, the
pinch-off is resisted by fluid inertia, and the most unstable mode has a wavelength of
9.02R and timescale of instability 2.91(ρR3/σ )1/2. At low Oh, the pinch-off is resisted
by fluid viscosity, the instability shifts to long wavelengths, there is no finite mode
of maximum instability, and the timescale of instability is µR/σ . The fluid rims in
our problem have characteristic diameter of 1–2 mm and an Ohnesorge number of
O(100); consequently, the high-Oh results are relevant. The spacing between bones
was found to lie between 0.7 and 1.0 cm in all the experiments considered, and so
to be consistent with a Rayleigh–Plateau mechanism for pinch-off. Furthermore, we
note that the rim instability is initiated very close to the top of the chain, where the
centripetal acceleration is smallest, so the Rayleigh–Taylor mechanism would predict
the slowest growing modes and longest wavelengths.
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The constancy of the wavelength of instability in our experiments indicates that
the Rayleigh–Plateau mechanism is responsible for the fishbones. Using parameters
appropriate for the sheet rim (table 1) indicates that the timescale of capillary pinch-
off, τ ∼ (R3ρ/σ )1/2 ∼ 0.01 s, is comparable to the time required for a fluid parcel to
traverse the chain. This offers a plausible explanation for the reversion from fishbones
to stable chain structures at high flow rates: the flow speed must be sufficiently low
that the instability has time to develop. A fishbone criterion based on this simple
physical picture is discussed in § 7.

Structures reminiscent of the fluid fishbones have been generated by acoustic forcing
at the source of spray atomizers (Van Dyke 1988, p. 87). The possibility that fishbones
were forced by some resonance in our system was carefully considered. The fishbone
structure still obtains when the jets are produced by a gravity feed; we thus ruled out
pump vibrations as the source of instability. We similarly ruled out other parts of the
apparatus by replacing them with different components; the fishbone instability was
robust to all such changes.

7. Discussion
The reduced equations, (4.1)–(4.4), prescribe the shape of fluid sheets bound by

stable rims. The system is a generalization of that developed by Taylor (1959b)
through inclusion of the curvature force associated with the bending of the rim,
and the pressure force associated with tangential gradients in rim radius. In the
parameter regime considered in our experiments, these new terms are not significant;
consequently, our governing equations reduce to those of Taylor (1959b). Nevertheless,
our experimental study has provided a successful test of these equations in a new
and relatively simple geometry. Clanet & Villermaux (2002) used these equations to
predict successfully the distortion of a circular horizontal sheet by its impact with a
vertical wire, a geometry originally investigated qualitatively by Taylor (1959a). In
Taylor’s (1960) investigation of colliding jets, the sheets were generated with water,
the rims were unstable, and sheet shapes were simply prescribed by the Taylor radius
ρu0Q(θ )/(2σ ). By increasing the viscosity of our test fluid, we were able to access
and investigate the parameter regime characterized by stable rims, in which the sheet
shape is strongly influenced by centripetal forces associated with flow along the rim.

We have examined the rich family of flow structures generated by the collision of
high-Reynolds-number laminar viscous jets. The flow forms observed are summarized
in figure 11, and include the fluid chains and fishbones that have been the principal
focus of our study. The detailed stability analysis required to predict the bounds
between the various flow regimes delineated in figure 11 is left as a subject for future
consideration. We here simply discuss the mechanisms responsible for the observed
instabilities. First, the violent shear-induced flapping instabilities (figure 13) of the
sheet arising at the highest flow rates have been considered in detail by previous
investigators (Dombrowski & Fraser 1954; Mehring & Sirignano 1999; Villermaux &
Clanet 2002), and so have only been touched upon in our study. Second, the transition
from the spluttering chains to the disintegrating sheet (figure 12) is expected to arise
when the sheet length exceeds the Taylor radius. One thus expects this transition to
be independent of Rej , and so to be represented by a vertical line in figure 11, as is
roughly the case for Rej > 800.

The fluid chains and fishbones represent a class of flows dominated by fluid inertia
and surface tension; nevertheless, fluid viscosity evidently plays a critical role in their
form through its influence on the rim size and stability. Figure 11 indicates that for
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Rej > 800, the fishbones represent an intermediate state between the water sheets (with
unstable rims) studied by Taylor (1960) and the fluid chains (with stable rims). The
fishbones may thus be viewed as a manifestation of viscosity regularizing the instability
of the fluid rim. The presence of a minimum Reynolds number (approximately
280) below which fishbones do not exist similarly suggests the importance of fluid
viscosity in suppressing the capillary instability of the rims. The finite window of
fluid viscosities in which the fishbones arise may thus be rationalized: the viscosity
must be sufficiently high that the rapid rim instability observed by Taylor (1960) not
arise, and sufficiently low that the rim not be entirely stable (as in the case of the
chains).

It is generally expected that the fluid chains will replace the fishbones when the
growth time of the capillary instability of the bounding rim τp is exceeded by the
travel time along the rim. For a sheet of length L and speed u0 the convective
timescale is τc = L/u0. While in general τp will depend on fluid viscosity, for an
inviscid sheet bound by rims of radius R, the timescale of capillary pinch-off at high
Oh is τp =2.91(ρR3/σ )1/2 (Chandrasekhar 1961). The onset of the fishbone instability
in the inviscid limit thus requires that

τp

τc

∼ R

L

(
R

Ri

)1/2

We1/2 < 1. (7.1)

If R and L were independent of Rej and We, one would expect the fishbones to
arise for all Weber numbers below a critical value; however, one expects a nonlinear
dependence of R3/2/(LR

1/2
i ) on Rej and We. Clanet & Villermaux (2002) demonstrated

that the mean rim size of a circular sheet decreases with increasing Weber number.
While our sheet geometry is different, such a trend in our system would be consistent
with the observed finite extent of the fishbone regime; specifically, it would decrease
the likelihood of τp/τc being a monotonically increasing function of Q.

A fishbone criterion expressible in terms of the source conditions would require a
more complete understanding of the dependence of the rim radius and instability on
Rej and We. The linear theory for the Rayleigh–Plateau instability (Chandrasekhar
1961) indicates that in the parameter regime examined in our study (Oh ∼ 50 − 200),
viscosity is expected to increase the timescale of capillary pinch-off by a factor of
1.5–3 relative to that for the inviscid case, thus providing some rationale for the
observed dependence on Rej of the boundary between chains and fishbones. Finally,
we note that in our system the rim radius necessarily increases with distance along
the rim; the tendency of rim growth to suppress the capillary instability has recently
been demonstrated by Fullana & Zaleski (1999). A more detailed investigation of
criteria for the fishbone instability will be the subject of future consideration.

The generic picture of droplet formation from high-speed fluid sheets was
originally presented by Dombrowski & Johns (1963), and has been refined by
Villermaux & Clanet (2002). The sheet becomes unstable to a flapping mode instability
that eventually leads to the sheet breaking up into a series of fluid ligaments aligned
perpendicular to the flow direction. Subsequently, the ligaments break into a series
of droplets via the Rayleigh–Plateau pinch-off mechanism. We note that droplet
formation accompanying the fishbone instability is inherently different, being rim-
rather than sheet-based. While the latter stages of the fishbone instability are similarly
characterized by the capillary pinch-off of fluid ligaments, these ligaments arise from
the coupling of the capillary pinch-off of the fluid rims with the centripetal forcing
associated with flow along the rims.



Fluid chains and fishbones 309

The authors thank Tom Peacock, Jeff Leblanc and Jeff Aristoff for their assistance
with the experiments. We also gratefully acknowledge Gareth McKinley and José
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Appendix. The curvature force on the sheet’s rim
We here deduce an expression for the curvature force per unit length, Fc, acting

on the sheet’s rim. We denote by n̂ the unit vector normal to the rim surface and by
s the local tangent to the rim centreline, and assume the sheet lies in a horizontal
plane (refer to figure 9). One may generally express the curvature force acting over a
surface S as

Fc =

∫
S

σ (∇ · n̂) dŜ. (A 1)

An expression for the curvature J = ∇ · n̂ may be obtained by assuming that the
cross-section of the rim is circular in the vertical plane parallel to the local radius of
curvature. J may then be characterized entirely by the radius of curvature rc of the
centreline and the derivatives of the rim radius R with respect to θ . We compute the
curvature of the surface defined by the position vector:

T (θ, φ) = (cos θ[rc + R(θ) cos φ], sin θ[rc + R(θ) cos φ], R(θ) sin φ), (A 2)

that corresponds locally to a tapered cylindrical section:

J = − (rc + 2R cos φ)

R(rc + R cos φ)
− (dR/dθ )2(3R cos φ + rc) − (d2R/dθ 2)(R2 cos φ + Rrc)

R((rc + R cos φ)2 + (dR/dθ )2)3/2
. (A 3)

In the limit of R2/r2
c � 1, the second term is negligible, so we obtain

J = − rc + 2R cos φ

R (rc + R cos φ)
, (A 4)

which corresponds to the total curvature of a torus of inner radius R and outer radius
rc.

To compute the surface integral required for the curvature force per unit length

(A1), we use the local coordinate system defined by the unit vectors r̂c, ẑ, and θ̂ ; r̂c

is the normal to the rim centreline in the plane of the sheet, ẑ the vertical and θ̂ the
tangent to the rim centreline. Substituting dŜ=R dφ(rc + R cos φ)n̂ dθ and (A 4) into
(A 1) yields the curvature force per unit length along the rim, accurate to O((R/rc)

2):

Fσ =
2σ (rc − R)

rc

r̂c +
σ

rc

∫ π

−π

(rc + 2R cos φ)(cos φ r̂c + sinφ ẑ) dφ (A 5)

= 2σ

(
rc − R

rc

+
πR

rc

)
r̂c. (A 6)
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